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Insights from Linear Predictions of Aircraft Response
to Damaged Airfields

James J. Olsen*
Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio

This paper examines the dynamic response of a simplified mathematical model of an aircraft that taxies over
two arbitrary disturbances. It produces the idea of the bump multiplier that determines explicitly whether the
second discrete disturbance will amplify or attenuate the response from the first disturbance. While the
assumptions are very severe, the results can be useful to gain physical insight, to guide more elaborate nonlinear

calculations, and to plan test programs.

Introduction

HE problem of aircraft dynamic response to taxiing over
" rough surfaces has been a subject of analysis and test for
many years. For the most part, the work has been limited to
predicting and/or measuring the dynamic response of an
aircraft due to the (nearly) random roughness of the terrain or
by wear and tear on runways and taxiways. Within the last
several years, however, concerns have arisen within the de-
fense agencies of the NATO countries about the safety of
aircraft operations over the discrete disturbances which can
arise from bomb-damaged and repaired runways.

As a result of those concerns the U.S. Air Force instituted
Program HAVE BOUNCE!? that performs flight (taxi) tests
over simulated, relatively mild runway damage and repairs for
several USAF combat and transport aircraft. HAVE BOUNCE
also develops computer programs® to predict the dynamic
response to the simulated runway profiles. Other NATO na-
tions are performing similar test and analysis programs on
their aircraft.

HAVE BOUNCE considers the computer programs to be
validated when they produce satisfactory comparisons with
the experimental results from flight (taxi) tests under relatively
mild conditions. Then HAVE BOUNCE uses the validated
computer programs to extrapolate from the test conditions to
more severe operational cases.

Because the taxi test programs have proven to be very
expensive and difficult to repeat exactly, the USAF also
created the Aircraft Ground-Induced Loads Excitation
(AGILE)* facility that measures the dynamic response of
operational aircraft to damaged and repaired runways within
the controlled conditions of the laboratory. AGILE supports
an operational aircraft on its tires on massive hydraulic shakers
and drives the shakers vertically to represent the vertical
events of the aircraft taxiing over damaged and repaired
runways.

Each of the three integrated shakers can sustain a static
weight of 50,000 lb, displace amplitudes of 10 in., impose
dynamic forces up to 50,000 lb, and be driven sinusoidally
(frequencies up to 25 Hz), randomly, or to follow prescribed
discrete motions. At present, AGILE is limited to providing
solely vertical dynamic forces to the aircraft (no lateral or
drag forces or rotating wheels). In its first major test, agree-
ment between the AGILE tests and HAVE BOUNCE taxi
tests for an operational A-7D aircraft was excellent.
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All three evaluation methods—computer programs, HAVE
BOUNCE tests, and AGILE tests on operational aircraft—have
been dominated by one major consideration: the nonlin-
earities in the landing gear. As a result, nearly all of the
computations have been done with numerical time-
integration of the nonlinear differential equations of motion.
The taxi tests and AGILE tests also have been forced to adopt
a tedious approach of repetitive, trial-and-error test cases,
again because concerns over strong nonlinearities prevented
the consideration of the superposition of simple disturbances
to synthesize more complex responses.

In this paper, we contend that the nonlinearities do indeed
strongly influence the computational and test results, espe-
cially the exact levels of the loads obtained. However, the
qualitative response, the physical understanding, and the
selection of speeds, bump heights, and bump spacings which
produce large dynamic responses ought to be predictable for
the most part by simpler linear methods. Nonlinear calcula-
tions, taxi tests, and AGILE tests ought to be preceded by
linearized calculations that can be done rapidly and can
yield much physical insight into those conditions that pro-
duce extensive dynamic response. A clever analyst may be
able to find the simplicity and intuitive understanding in
seemingly complex time histories, which in fact may be not
much more than superpositions of many relatively simple
events.

The purpose of this paper is to show how linear analyses
with a one-degree-of-freedom model can yield an understand-
ing of complex time histories and how they can be used to
plan nonlinear calculations, taxi tests, and AGILE tests. The
paper illustrates the principles by treating the response of a
linear one-degree-of-freedom oscillator as it taxies over two
successive discrete disturbances.

Clearly, this simplified approach should be extended to
include a second degree of freedom such as aircraft pitch and
to include the possibility of excitation through a second
landing gear. Those are straightforward extensions which have
indeed been performed, but we omit them here to illustrate
only the main ideas.

Single-Degree-of-Freedom
Oscillator to a Single Disturbance

Assume a single-degree-of-freedom oscillator, with damping
less than the critical value, receives some excitation from an
arbitrary disturbance, but that the excitation stops at time
t =t,. For example, Fig. 1 illustrates the acceleration of such a
system in response to a triangular disturbance, ending at
t=t.
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Fig. 1 Acceleration response to a single triangular disturbance.

For times after #, when the response is decaying freely, the
acceleration response can be written:

D>y =e "V {4 sinfw(t - 1)]

+ B, cos[ w(t—1,)]} )]
where
4 = the time the excitation ends,
aw = damping,
w = damped frequency, and

A,, B, = constants which depend upon a, w, the excitation and
the initial conditions.

Note that the damping parameter a above is not quite the
same as §, the frequerntly used fraction of critical damping
from the classical, single-degree-of-freedom oscillator. At this
point we merely want to observe that the response is damped
and oscillatory and that it could come from test data or
analyses.

The decaying acceleration response also can be written as:

E(t)|t>11 =Rle_aw(t_t1)8in[w(t_tl) +¢1] (2)

where

R, =4} + B?

tang, = B, /4,

We loosely refer to R as the potential amplitude of the
acceleration response. It is an upper bound (not necessarily
the best one) on the amplitude of the acceleration response to
a single disturbance. The phase shift ¢, depends only on 4,
and B, and will therefore be different for different excitations
and initial conditions.

By differentiating Eq. (2) with respect to time, we see that
the locally extreme values of 2(¢)|,,, will occur at the values
of time for which

o(t=1)=(2n-1)5 —($,+8); n=1,23,... (3)

where
tand = a

The additional phase shift 8§ will be small for values of
damping that are small with respect to the critical value,
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Fig. 2 Acceleration response to two triangular disturbances.

(a < 1). Note, however, that the first phase shift ¢; need not
be small.

Two Successive Disturbances

Now suppose the oscillator receives a subsequent arbitrary
excitation over another period of time, and that excitation
stops at time ¢ = ¢,. For example, Fig. 2 illustrates the acceler-
ation response to two successive triangular disturbances, the
second ending at t = ¢,.

If there had been no previous disturbance, the acceleration
response to the second disturbance would have been

() i5p, = e "D {4y sin[w(1 - 1,)]
+ B, cos| w(1—1,)]} 4

However, because of the first disturbance, the acceleration
response to the combined disturbances actually is

2,5, = (A4S +BG) +e,(4,5 + BG)  (5)
where
—aw(t—1t;)

€.

l=e

S;=sin[w(z—1,))
C=cos[w(t—1)]

The trick is to write Eqgs. (4) and (5) with respect to the time
of the most recent disturbance, #,. To that end we write

1=t =(t—4)+(,— 1)

ey = e~ aw(n—n)

Sy =sinJw(t, — )]
Gy =cos| (2, — )]

The acceleration response to the combined disturbances
then can be rewritten as

()], 5, = Rye” U™ sin[w(r—1) +¢,] (6)

where

(N

R, = (A§+Bz2)+2921[C21(A1A2+3132)
’ + Sp( A4, B, — B A,)] + ek (42 + B?)
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B, + 921(A1S21 + Blc21) (8)
A, + 921( A,Cy — Blszl)

Equation (7) for R,, the potential amplitude of the acceler-
ation response to the combined disturbances, is one of the
most useful findings of this paper. Much of the subsequent
work here will be concerned with finding the conditions which
locally maximize or minimize R,.

Similarly to the results for the single disturbance, the locally
extreme values of #(¢)|, ., will occur when

tan¢, =

w(t=1)=(2n-1)F —($,+8); n=1,23,.. (9)

We have seen how to find the times for locally extreme
values of the decaying acceleration response, assuming we
know 4,, B, A4,, B,, a, w, 1, and t,. However, we actually
are searching for the best and worst possible runway profiles,
so we want to find the values of #, that will give locally
extreme values of the potential amplitude R,. We differentiate
Eq. (7) with respect to ¢, and set the result to zero to obtain

Ry, sin[ w(2, — e =) =0 (10)

[43
n) +¥,] +f‘/‘1‘jr;;;

- | 43 + B?
R,=/—F—7 11
12 A% + B12 ( )

Q‘(AlAz + B1Bz) — (Ale _ B1A2) (12)
(A;4,+ B, B,) + a( 4, B, — B, 4,)

where

tany,, =

The exact solution for the time delays (z, —1,) that give the
locally extreme values of R, would require a numerical or
graphical solution of Eq. (10). However, for small damping we
would expect

w(ty—t)=nwr—y,;  n=123... (13)

Bump Multiplier

Recall that R, represented the potential amplitude of the
decaying acceleration response to the first disturbance and
that R, represented the potential amplitude of the response to
the combined disturbances, where in each case we measured
time from the time of the most recent disturbance. We call the
ratio R,/R, the bump multiplier, since it defines the extent to
which the second disturbance amplifies or attenuates the
acceleration response to the first disturbance. The bump multi-
plier is

(A% + Bzz) +2ey[Cy( 44, + B B,)
R, +S21(Ale_BlA2)] +e§1(Af+B12)

2= 14
R A} + B} (14

To assist in the interpretation of the bump multiplier we add
another set of abbreviations

B;
€’=Z’ l=1,2
to obtain
2 Al
(1+e)+2 o [Cu(1 +€6,)
2

R y +8(e; - ‘1)]+( 921) (1+fiz)
=== (15)
R A, 1+¢
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When we use these abbreviations to find the time delays
(1, = 1) that give the locally extreme values of the potential
amplitude R,, we find that 7, — 1, must satisfy the following:

1+¢
V 1+ gsm[“’(tz*tl)'*'#’u]

a

V1 +o?

A2
Ay

+ e = (16)

where

a(l+66) —(6,—¢)
(1+ee) ta(e,—¢) (an

tany, =

Use of the Average Speed
We have made no assumption of a constant taxi speed
betwéen the two disturbances. If / is the distance between the
two disturbances, the average speed is

~ 1
V= P (18)
Then we can express the term
lw < !
w(tz—tl)—7=>\ (19)

The usual termmology for A =1w/V, based on the instanta-
neous speed, is the reduced frequency. Therefore A=lw/Vis
the reduced frequency based on the average speed between the
two disturbances.

Special Case: Similar Disturbances

We now define similar disturbances as discrete disturbances
that have the saine shape but differ only in magnitude and/or
sign. Examples would be the entire family of infinite ramps or
a family of sine waves of the same wavelength but varying
heights. The assumption of simiilar disturbances is not a very
limiting one. In fact, nearly all of the profiles tested in the
HAVE BOUNCE program and all of the NATO/AGARD
profiles can be broken down into sequences of similar ramp
disturbances. For linear systems with zero initial conditions,
similar disturbances will produce similar acceleration re-
sponses, and when disturbances are similar, ¢, =€, = €.

Under the assumption of similar disturbances, the potential
amplitudes and phase angles become

R =|A4V1+é (20)

A A :
R, =|A4,|V1+ ¢ \/1+2(A—:e21)c21+(74l2e21) (21)
tang, =€ (22)

A
€+ e21 (Sy + eCzl)

tang, =

1+ ( A en)(Cn €S5) )

tany,, = « (24)

The bump multiplier is

A, 4,V
1+2 4, e |Cy + A_zeZI (25)

A,
A1

R,

R
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Figures 3 and 4 illustrate the bump multiplier for equal and
opposite disturbances as a function of the reduced frequency
based on the average speed.

The major conclusions to be drawn are as follows:

1) The spacing that maximizes or minimizes the accelera-
tion response depends very weakly on the damping param-
eter, «, and

2) The first approximation for the best/worst reduced fre-
quencies,

A=nm—y,=nr—a

is an excellent approximation to the exact solution for rea-
sonably small values of damping.

Example: Spring-Mass-Damper-Taxiing
Over Two Ramps
We consider the example of a classical, single-degree-of-
freedom oscillator that encounters two ramp disturbances.
The disturbances are separated by a distance / and occur at
times #, and z,, respectively. The taxi speeds ¥V}, V, are not
necessarily equal at the time of the encounters, nor are the
ramp angles 6,, 6,.
The differential equation of motion is:

mi+cit+kz=cg+kg (26)

where

g(t) = Vlru(s)

u(t) = unit step function

We make the usual abbreviations:
{ = ratio of damping to critical value, ¢/2mw,
w, = undamped natural frequency, \/k/—m

By solving the ordinary differential equation for the displace-
ment in response to infinite ramp inputs (with zero initial
conditions), and then differentiating those results twice with

respect to time, we find the various parameters to use in Egs.
(1) and (4):

A= V;ai“’o(l - 2§2) (27a)
B, =2V0.w,4y1 - ¢ (27b)

() T g FLE

0 ,(/

Fig. 3 'The bump multiplier for equal disturbances.

J. AIRCRAFT
w = damped frequency, wyy1 — ¢? (27¢)
a=¢/1-¢? (27d)

For purposes of illustration we pick the fictitious undamped
natural frequency to be

fo=wy/27=1.0Hz

and we pick the damping value
§{=01

All members of the family of infinite ramps are similar.
Therefore, for every ramp input (regardless of speed V,
frequency w, or slope §) the similarity parameter ¢ is

B 2y1-¢*
€= q = Iy -t =0.2030 (28)

The second phase shift for the location of the locally
extreme values of the decaying acceleration response will be

6 =sin ~!{=0.1002 rad =~ 5.739 deg

o laA'

Fig. 4 The bump multiplier for opposite disturbances.

Fig. 5 Acceleration response to an infinite ramp.
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Fig. 6 Acceleration response to an infinite ramp at several speeds.
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Fig. 7 Acceleration response to two successive infinite ramps.

Amplitude

Figure 5§ illustrates the acceleration response to a typical
single ramp input at a constant speed of ¥'=10.0//s, where
the length units are in any convenient, consistent System.
Figure 6 illustrates the sensitivity to speed by plotting the
acceleration response for a range of speeds V'=10,11,...,
201/s. Figure 7 illustrates the decaying acceleration response
for two equal (but opposite) ramps, separated by a distance of
20.01, at a constant speed of 10.0//s. Figure 8 illustrates the
sensitivity to speed for the range of speeds V'=10,11,..., 20//s.
While the amplitude of the acceleration response to the single
disturbance grew monotonically with increasing speed, the
amplitude of the acceleration response to the combined dis-
turbances displays a much more complicated structure.

Bump Multiplier

Reverting to the general case of nonconstant speeds and
ramp angles, the potential amplitude for the dynamic acceler-
ation response to the combined disturbances is given by

R, = ‘*’0\/( [/202)2 + 2( VlgleZl)CZl + ([/161921)2 (29)

The bump multiplier is

Vibiey Vibiexn :
\/1+2( 7,0, G + V.0, (30)'

R,
R =

Vif,
0,
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Fig. 8 Acceleration response to two infinite ramps at several speeds.
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x Fig. 9 An AGARD bump from two infinite ramps. )
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. Fig. 10 An AGARD repair mat from two AGARD bumps.

The dominant term is Cy =cosA, which is modified by
Vib,e5,/ V28,

Equations (29) and (30) are very powerful results that relate
the potential amplitude R,, and the bump multiplier to the
instantaneous speeds Vj, V,, the average speed ¥V, the ramp
angles ), #,, the damping parameter «, and the average
reduced frequency A =/w/V.

Best / Worst Runway Profiles

The first approximation to the time delays that locally
maximize and minimize the acceleration response to the com-
bined disturbances is:

A=nm—y,; n=1,2,3...

where

tany,, = a = 0.1005

or

% =0.9681,0.9841,0.9894,0.9920.. .; n=1,2,3,4...

Application to Nonlinear Calculations and
Test Programs

Three Principles

The first set of basic ideas to keep in mind when using these
results to plan nonlinear calculations, HAVE BOUNCE (taxi)
tests, or AGILE tests is that a useful building block is the
infinite ramp, that two infinite (opposite) ramps can combine
to produce an AGARD bump, and that two (opposite)
AGARD bumps can combine to produce an AGARD repair
mat (Figs. 9 and 10).
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Second, recall that for two disturbances separated by a
distance /, the best/worst combinations tend to occur when

7\=f’17 =2ﬂi—£ mam—y,=nr—a; n=1,23. ..

Third, the potential amplitudes of the acceleration response
of a classical single-degree-of-freedom oscillator to a single
infinite ramp and to two combined ramps are

R, = Vlwol 0, ‘

R, = ‘*’O\RVzaz)z +2( Vzoz)( Vibiex) Gy + (V131‘321)2 (31)

Obtaining the Infinite Ramp Data from the Test Results for an
AGARD Bump

Because of the impossibility of experimentally developing
an infinite ramp, it will be more practical to excite the
oscillator with an AGARD bump and then infer what the
acceleration response would have been to an infinite ramp.
Since the acceleration response will undoubtedly not be purely
in a single-degree-of-freedom, we must process the test data to
obtain separate values of R,, a, w, and ¢, for each degree of
freedom in the equation:

2(t)|t>zz = RzeAaw(t_IZ)Sin[w(t- t2) +¢'2]

For each degree of freedom we will also have e,;, S,;, and C,;
to obtain the potential amplitude R, from:
R
R, = - (32)

y1—2e,G + e

A good test of our assumed linearity is to form R,/Vd. The
values for each degree of freedom should be approximately
independent of speed V or angle §.

Finally, the phase lag ¢, can be obtained from:

_ €15
e= 1-eCy (33)
_ tang, + Q
= T- Qs (39
tang; = ¢

Guidelines for Nonlinear Calculations, AGILE Tests, and Taxi Tests

We begin by calculating or measuring the acceleration
response to an AGARD bump (Fig. 11) over a range of speeds
V and angles 6.

Fig. 11 Geometry of an AGARD bump.
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The next step should be to test the linear result that the
best /worst AGARD bumps will be those for which

«
>\=-17znﬂ—a;

€

n=1,2,3...

Since /; is fixed by the AGARD geometry, we can accomplish
this variation by choosing the speeds to be:

Lo

P n=1,2,3...
nT—o

V=

We can interpret the final slope of the AGARD repair mat
(Fig. 12) between points x, and x, as just the negative of the
initial slope; with the only distinction being that it begins at a
distance of /; + I, after the initial slope. Then we can search
for the best/worst length of the repair mat by setting:

5= (l1 +~12)w
Vv

=nm— a;

n=1,2,3...

where V' is the average speed over the distarice between x;
and x,. In this case, we have both the average speed ¥ and the
average length [, to use as variables.

Now we note that the total length of the AGARD repair
mat is 2/; + /, and assume that another repair mat is placed a
distance /; behind the first mat (Fig. 13). Therefore, to look

Fig. 12 Geometry of an AGARD repair mat.

Fig. 13 Geometry of two AGARD repair mats.
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for the best /worst spacings we set:

QL+L+5h)w
v

A= =nmw—

n=1,2,3...

where ¥ is the average speed between the two repair mats.

Conclusions

We have treated the dynamic response of an aircraft taxiing
over runway disturbances under the assumption that the gross
aspects of the dynamic response can be found in the analysis
of a linear, one-degree-of-freedom system excited by two
successive disturbances. We have found the following:

1) There is a great deal that can be learned about the
governing physics for aircraft dynamic response to taxi over
damaged and repaired runways by examining the results of
calculations with relatively simple, linear models.

2) The seemingly complicated time histories can be merely
superpositions of relatively simple, time-phased events.

3) Relatively simple expressions are available for the poten-
tial amplitude (an upper bound) of the acceleration response
excited by one or two disturbances. In the (not too) special
case of similar, disturbances separated by a distance /, with
nonconstant speeds and ramp angles, the expression for the
potential amplitude R, is:

R,= "-’0\/( V202)2 + 2V202( V101921) Gyt (1/101921)2

where e,; = e ®*, C,; =cosh, and A =lw/V.

4) The effects of disturbance spacing and variable taxi
speed are controlled by the reduced frequency, based on the
average speed between disturbances.
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5) One need not actually calculate the time histories to find
the best/worst profiles and speeds, but can use the expres-
sions for the potential amplitude R, and the bump multiplier
R,/R,.

26/) ’}o maximize/minimize dynamic response, a good ap- '
proximation for A is A = n7w — a.

7) While damping obviously controls the dynamic response
to the disturbances, the critical speeds and disturbance spac-
ings are weak functions of damping.

8) These results can easily be extended from two dis-
turbances to an arbitrary number of disturbances and multi-
ple-degree-of-freedom systems with multiple landing gear.

9) The results of calculations based on these linear methods
should be compared with results from flight (taxi) tests, AGILE
tests, and nonlinear calculations. This is not to say that the
linear results should be relied upon to predict detailed loads;
rather the question should be, “Do the simple linear models
predict the critical speeds and spacings so that we can use
them to guide our test programs and nonlinear solutions?”
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